Tag Archives: involute gear

China Hot selling Involute Spline Shaft and Gear Shaft Precision Gear near me factory

Product Description

Your customized parts,Customized solutions
Company profiles
We established in 2571 year, named Xihu (West Lake) Dis. Tongyong Machinery Company. In 2019 renamed HangZhou Hejess Machinery Co.,Ltd and established new plants. 
We are mainly engaged in the designing and manufacturing of steel machinery components and non-standard machinery parts, including shafts, flange, gears, rings, sheaves, couplings, bearing supports,  and forgings etc.

Production Parameter
 

  • Material: Alloy steel,Carbon steel,Carburizing steel,Quenched and tempered steel
  • Heat treatment: Normalizing,Annealing,Quenching&Tempering,Surface Quenching, Induction hardening
  • Machining: CNC Turning,CNC Milling,CNC Boring,CNC Grinding,CNC Drilling
  • Gear Machining: Gear Hobbing,Gear Milling,CNC Gear Milling,Gear Cutting,Spiral gear cutting,
  • Gear Cutting
  • Inspection: Chemical Composition Test,Ultrasonic Test,Penetration Test,Radiographic Test,

Magnetic Test,Tensile Strength Test,Impact Test,Hardness Test,Dimension Test.

We can provide forging from 1kg to 5Ton. And make precison machining. Also have welding and assembly capabilities.

Quality Control
Product quality is what we are paying great attention to all the time. Each product is produced under careful control at every process and inspected by experienced engineers strictly according to the related standards and customer requirements, ensuring the super performance of our goods when arrive at customer.
Ø Production Flow Chart
1, Order Analyzing
    Know requirements of raw material, chemical composition, Mechanical properties.
    Analyzing how to forging and how to make heat treatment.
2, Raw material.
    Use which raw material, plate, round bar, steel ingot.
   According your parts, choose the best cost performance one.
   If you required special material, will customized from steel factory.
   Customized raw material according your requirments.
3, Forging
    Make forging process chart and forging form
    Make forging drawing
    Make 3D drawing
    Make forging mould
4, Pre –  forging
5, Finish – forging
Natural gas heating furnaces are monitored and controlled by computer programs to ensure precise heating within set time and temperature range as required.
A broad range of forging equipment,including friction press, hudraulic hammer, forging hammers.With the aids od intelligent software,proper deformation,forging ration,ingot size and weight,forging tooling and equipment will be determined to ensure the wrought structure through hout and sound quality.
6, Pre- machining
7, Make UT (ultrasonic) inspection.
8, Make heat treatment
9, Inspect hardness and mechanical properties.
10, Make precision machining / finished machining.
      Use CNC machining center, CNC milling, CNC boring, CNC grinding
11, Inspect dimenssions.
12, Protecting and packing.

Main market :  America, Australia, Malaysia,Israel,Britain, Russia,Canada, ect.

Services : The services we can provide are : FOB, CIF, DAP. Only give me the drawings and requirements, you will receive the goods at your home.
 Wehas accumulated rich knowledge and experience in the producing and exporting. Familar every process, when metting problems, be able to find a solution timely.

Excellent service attitude, fast reaction speed, on-time delivery, consciousness of responsibility and flexibility is what we are practicing from the very beginning, combining with high credit, competitive price, close interaction with customer and innovative way of working, make us win more and more business and excellent customer satisfaction.
To choose us, HangZhou CZPT Machinery, as your business partner, never will you find you are wrong!

PRODUCTION DETAILS

Technology : Free forging / Open forging / Die forging / closed forging / Impression die forging / Flashless forging / multi-ram forging / multidirectional die forging / precision forging / croe forging / combination forging / extrusion forging / roll forging / reducer rolling / ring rolling /  open die forging / flat die forging / loose tooling forging
Material Standard : ISO / DIN / W-Nr / BS / EN / ASTM / ASME / AISI / UNS / SAE / JIS / SS/ NF / GOST / OCT / GB
Material Type: Austenilic Ni-Cr Stainless Steel / Austenitic Alloy Steel / Austenitic Stainless Stee / Axle Shaft Steel /  Bar Steel / Bearing Steel / Bolting Steel / Carbon And Low-Alloy Steel Vessels / Carbon Steel / Carbon Tool Steel /  Carbon-Containing Alloy Steel / Case-Hardened Steel / Cast Steel / Cast-Steel Pipe / Centrifugal Steel / Centrifuge(D) Steel / Channel Steel  / Chilled Hardened Steel / Chrome Hardened Steel / Chrome-Carbon Steel  / Chrome-Molybdenum Steel  / Chrome-Nickel Steel / Closed Die Steel / Coating Steel Pipe / Die Steel / Drawing Steel / Extra-High-Tensile Steel / Fabricated Steel /  Ferritic Stainless Steel  / Ferritic Steel / Figured Steel / Fine Steel / Flange Steel / Groove Steel / Hard Alloy Steel /  High Alloy Steel / High Boron Steel / High Carbon Steel / High Chrome Alloy Steel / High Manganese Steel / High Nickel-Chrome Steel

 

Show the production process as below photos:

Our Products Catalogue
 

Products Catalogue
Item Application Technical Material Picture Market
1 Lift Rod Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Australia
2 Eccentric shaft Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Britain
3 Pin shaft Forging – heat treatment –  CNC machining Alloy steel USA
4 Spindle Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Germany
5 Step shaft Forging – heat treatment –  CNC machining Alloy steel Peru
6 Long shaft Forging – heat treatment –  CNC machining – CNC Grinding Alloy steel Ukraine
7 Big head shaft Forging – heat treatment –  CNC machining Alloy steel Israel
8 Hollow shaft Forging – heat treatment –  CNC machining Custom Alloy steel Singapore
9 Zinc plating flange Forging – heat treatment –  CNC machining – Zinc plating Alloy steel Australia
10 Spline shaft Forging – heat treatment –  CNC machining Alloy steel Singapore
11 Gear Shaft Forging – heat treatment –  CNC machining – Surface Quenching Alloy steel Russia
12 Gear Forging – heat treatment –  CNC machining Alloy steel Russia
13 Ring Forging – heat treatment –  CNC machining Alloy steel USA
14 Ring Forging – heat treatment –  CNC machining Alloy steel Malaysia
15 Half ring Forging – heat treatment –  CNC machining Alloy steel Malaysia
16 Cylinder Forging – heat treatment –  CNC machining Alloy steel Iran
17 Flange Forging – heat treatment –  CNC machining Alloy steel USA
18 Groove ring Forging – heat treatment –  CNC machining Alloy steel USA
19 Flange shaft Forging – heat treatment –  CNC machining Alloy steel USA
20 Flange Forging – heat treatment –  CNC machining Alloy steel USA
21 Pin shaft Forging – heat treatment –  CNC machining Alloy steel USA
22 Shaft Forging – heat treatment –  CNC machining Alloy steel USA
23 Square flange Forging – heat treatment –  CNC machining Alloy steel USA    Britain 
24 Nut Forging – heat treatment –  CNC machining Alloy steel USA
25 Flange Forging – heat treatment –  CNC machining Alloy steel USA
26 Flange Forging – heat treatment –  CNC machining Alloy steel USA
27 Forks Wire cutting – heat treatment – CNC machining Alloy steel USA
28 Closed die forging part Forging – CNC machining Alloy steel USA
29 Closed die forging part Forging – CNC machining Alloy steel USA
30 Closed die forging part Forging – CNC machining Alloy steel USA

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Hot selling Involute Spline Shaft and Gear Shaft Precision Gear   near me factory China Hot selling Involute Spline Shaft and Gear Shaft Precision Gear   near me factory